

PA Scoresheets

Site Name: CARUS CHEMICAL Co.

Date: 6-25-9/

GENERAL INFORMATION (continued)

CARUS CHEMICAL CO. PRODUCES WASTE WHICH IS A BY-PRODUCT OF ITS MANUFACTURING PROCESS WHICH INVOLVES THE USE OF ORES CONTAINING MANGANESE, CESIUM AND CERIUM. THE UNUSEABLE PORTION OF THE ORE IS PLACED IN LARGE ROLL-BUXES AND IS HAULED TO A PERMITTED LANDFILL ON A DAILY BASIS. PROCESS WATER ENTERS A 4-ACRE SETTLING AND TREATHEUT POND AND THEN ENTERS THE LITTLE VERMITION RIVER.

Waste Characteristics (WC) Calculations:

See PA Table 1, page 5)

MAXIMUM NUMBER OF CUBIC YARDS OF WASTE ON-SITE:

PILE = 250 yds3 = WC sore of 18

SURFACE IMPOUNDMENT (SOUTH SETTLING & TREATMENT PUND):

4 ACRES = WC SCORE OF 100

Determining the Waste Characteristics (WC) Score: WC, based on waste quantity, may be determined by one or all of four measures called "tiers": constituent quantity, wastestream quantity, source volume, and source area. PA Table 1a (page 5) is structured according to these tiers. The amount and level of detail of information available to you determine which tier(s) you can use for each source. For each source, evaluate waste quantity for as many of the tiers as you have information to support, and select the result that gives you the highest WC score. For any one source or for all sources at a site, if no information is available regarding waste quantity, assign a WC score of 18 (minimum).

PA Table 1a has 6 columns: column 1 indicates the quantity tier; column 2 lists source types for the four tiers; columns 3, 4, and 5 provide ranges of waste amount for sites with only one source, which correspond to WC scores at the tops of the columns (18, 32, or 100); column 6 provides formulas to obtain source waste quantity (WQ) values at sites with multiple sources.

To determine WC for sites with only one source:

- 1. Identify source type (see definitions).
- 2. Examine all waste quantity data available.
- 3. Estimate the mass and/or dimensions of each source.
- Determine which quantity tiers you can use based on available source information.
- 5. Convert source measurements to appropriate units for each tier you can evaluate for the source.
- 6. Identify the range into which the total quantity falls for each tier evaluated IPA Table 1al.
- Determine the highest WC score obtained for any tier (18, 32, or 100, at top of PA Table 1a columns 3, 4, and 5, respectively).
- 8. Use this WC score for all pathways.*

To determine WC for sites with multiple sources:

- 1. Identify each source type (see definitions).
- Examine all waste quantity data available for each source.
- 3. Estimate the mass and/or dimensions of each source.
- 4. Determine which quantity tiers you can use for each source based on the available information.
- 5. Convert the measurements to the appropriate units for each tier you can evaluate for each source.
- For each source, use the formulas in column 6 of PA Table 1a to determine the WQ value for each tier that can be evaluated. The highest WQ value obtained for any tier is the WQ value for the source.
- 7. Sum the WQ values for all sources to get the site WQ total.
- 8. Use the site WQ total from step 7 to assign the WC score from PA Table 1b.
- 9. Use this WC score for all pathways.*

^{*} The WC score is considered in all four pathways. However, if there are primary targets for ground water, surface water, or air migration pathways, assign the determined WC or a score of 32, whichever is greater, as the WC score for that pathway.

Site Name: CARUS CHEMICAL CO

Date: 6-25-91

PA TABLE 1: WASTE CHARACTERISTICS (WC) SCORES

PA Table 1a: WC Scores for Single Source Sites and Formulas for Multiple Source Sites

	Т		SINGLE	SOURCE SITES (assigned WC s	scores)	MULTIPLE SOURCE SITES
	E R	SOURCE TYPE	WC = 18	WC = 32	WC = 100	Formula for Assigning Source WQ Values
-		N/A	≤100 lbs	>100 to 10,000 lbs	> 10,000 lbs	ibs + 1
	* ASTESTREAS	N/A	≤ 500,000 lbs	> 500,000 to 50 million lbs	>50 million lbs	/bs + 5,000
		Langfill	≤6.75 million tt ¹ ≤250,000 vd ³	> 6.75 million ft ³ to 675 million ft ³ > 250,000 to 25 million yd ³	>675 million ft ³ >25 million ya ³	$fr^3 + 67,500$ $ya^3 + 2,500$
	v	Surface impoundment	≤6,750 ft³ ≤250 yd³	> 6,750 ft ² to 675,000 ft ² > 250 to 25,000 yd ²	> 675,000 ft ² > 25,000 yd ³	ft ³ + 67.5 yd ³ + 2.5
ļ	0	Drums	≤1,000 drums	>1,000 to 100,000 drums	>100,000 drums	drums + 10
\ \	L W E	Tanks and non- drum containers	≤50,000 gailons	>50,000 to 5 million gallons	>5 million gallons	gallons + 500
	E	Contaminated soil	≤8.75 million ft³ ≤250,000 yd³	>6.75 million ft ³ to 675 million ft ³ >250,000 to 25 million yd ³	>675 million ft ³ >25 million yd ³	ft ² + 67,500 ya ³ + 2,500
		Pile	≤6,750 ft ³ ≤2 50 vd ³	>6,750 ft ³ to 675,000 ft ³ >250 to 25,000 yd ³	> 675,000 ft ³ > 25,000 yd ³	ft ³ + 67.5 yd ³ + 2.5
		Landfill	≤340,000 ft² ≤7.8 acres	>340,000 to 34 million ft ³ >7.8 to 780 ecres	>34 million ft ¹ >780 acres	ft ² ÷ 3,400 acres + 0.078
	A	Surface impoundment	≤1,300 ft² ≤0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 scree	> 130,000 ft ² > 2.9 acres	fr + 13 acres + 0.00029
	REA	Contaminated soil	≤3.4 million ft ³ ≤78 acres	> 3.4 million to 340 million ft ² > 78 to 7,800 acres	>340 million ft ² >7,800 acres	ft ² ÷ 34,000 acres ÷ 0.78
	•	Pile •	≤1,300 ft² ≤0.029 ecres	>1.300 to 130,000 ft ² >0.029 to 2.9 scres	>130,000 ft ² >2.9 acres	/r² + 13 acres + 0.00029
		Land treatment	≤27,000 ft ² ≤0.62 acres	> 27,000 to 2.7 million ft ² > 0.62 to 62 acres	>2.7 million ft ² >62 scres	$ft^2 + 270$ acres + 0.0062

¹ ton = 2,000 lbs = 1 yd^3 = 4 drums = 200 gallons

PA Table 1b: WC Scores for Multiple Source Sites

WQ Total	WC Scere
>0 to 100	18
> 100 to 10,000	32
> 10,000	100

^{*} Use area of land surface under pile, not surface area of pile,

GROUND WATER PATHWAY

Ground Water Use Description: Provide information on ground water use in the vicinity. Present the general stratigraphy, aquifers used, and distribution of private and municipal wells.

Calculations of Ground Water Drinking Water Populations: Provide populations from private wells and municipal supply systems in each distance ring. Show apportionment calculations for blended supply systems.

Site Name: CARUS CHEMICAL CO.

Date: 6-25-91

GROUND WATER PATHWAY GROUND WATER USE DESCRIPTION

Describe Ground Water Use Within 4-miles of the Site:

Provide generalized stratigraphy; information on aquifers, municipal, and or private wells)

CARUS CHEMICAL CO. IS LOCATED IN AN AREA OF
WISCONSIN GLACIAL TILL BEDROCK CONSISTS OF HIGHLY
FRACTURED SILURIAN AND ORDOUICIAN -AGED DOLOMITES
AND THE ST. PETER SANDSTONE.

THE NEAREST MUNICIPAL WELL IS APPROXIMATELY .7 MILE
FROM THE SITE AND IS PART OF THE GROUP OF FOUR WELLS
WHICH THE CITY OF LASALLE USES FOR ITS TOTAL WATER
SUPPLY. THESE WELLS ARE IN THE SAND AND GRAVEL AGUIFER
AT DEPTHS RANGING FROM 60-70 FEET DEEP. THE CITY OF PERU,
WHICH IS LOCATED DIRECTLY WEST OF LASALLE, DRAWS ITS WATER
FROM THE ST. PETERS SANDSTONE AT DEPTHS OF 2,591 FT. TO 2764 FT.

THE CLOSEST KNOW PRIVATE WELL IS LOCATED APPROXIMATELY
15 MILES EAST-NORTHEAST OF THE SITE AND DRAWS WATER
FROM A CRACKED LIMESTONE FORMATION AND IS 160 FEET DEER

THE TOWN OF OGLESBY HAS 2 MUNICIPAL WELLS WHICH
ARE LOCATED APPROXIMATELY 34 MILES SE OF CARUS CHEMICAL.

Show calculations of ground water drinking water populations: PRIVATE WELL POPULATION:	TOTAL POPULATION
1 1 2 3 4	
0 0 11 132 342 334	' - 0
CITY OF LASAILE POPULATION?	0
4 1 2 3 4	1 0
$\frac{1}{9}$ $\frac{1}{0}$ $\frac{1}{9,446}$ $\frac{2}{0}$ $\frac{3}{0}$ $\frac{4}{0}$	1-9467
CITY OF PERU POPULATION	2-132
$\frac{4}{60}$ $\frac{1}{0}$ $\frac{2}{0}$ $\frac{3}{10,866}$ $\frac{4}{0}$	3-11208
CITY OF OGLESBY POPULATION (PIETY HOLL-JONESVILLE)	4-5242
$\frac{1}{4} \frac{1}{0} \frac{1}{0} \frac{2}{0} \frac{3}{0} \frac{4}{4373}$, - ,
4/0 5/0 VO 30 35 533	

GROUND WATER PATHWAY CRITERIA LIST

Site Name: CARUS CHEMICAL CO

Date: 6-25-91

This chart provides guidelines to assist you in hypothesizing the presence of a suspected release and identifying primary targets. It is expected that not all of this information will be available during the PA. Also, these criteria are not all-inclusive; list any other criteria you use to hypothesize a juspected release or to identify primary targets. This chart will record your professional judgment in evaluating these factors.

The "Suspected Release" section of the chart guides you through evaluation of some site, source, and pathway conditions to help hypothesize whether a release from the site is likely. If a release is suspected, use the "Primary Targets" section to guide you through evaluation of some conditions that will help identify targets likely to be exposed to hazardous substances. You may use this section of the chart more than once, depending on the number of targets you feel may be considered "primary," In the "Primary Targets" section on this sheet, record the responses for the well that you feel has the highest probability of being exposed to hazardous substances.

Check the boxes to indicate a "yes", "no", or "unknown" enswer to each question. If you check the "Suspected Release" box as "yes", make sure —inst you assign a Likelihood of Release value of 550 for the pathway.

			GROUND WATE	R PA	THW	AY	
			SUSPECTED RELEASE				PRIMARY TARGETS
Y •	N 3	Dewente.		Y •	N ₀	2803K3C	
=	X	Ξ	Are sources poorly contained?	=	Ξ	Ξ	is any drinking-water well nearby?
Ξ	X	=	is the source a type likely to contribute to ground water contamination (e.g., wet lagoon)?	=	G	3	Is any nearby drinking-water well closed?
=	X	=	is weste quantity perticularly large?			Ξ	Has foul-testing or foul-smelling water been reported by any nearby drinking-water users?
	X	J	Is precipitation heavy and infiltration rate high?				Do any nearby wells have a large drawdown or high production rate?
	7	۵	Is the site located in an area of karst terrain?		а	a	Are drinking-water wells located between the site and other wells that are suspected to be exposed to hazardous substances?
Ξ	Z	۵	Is the subsurface highly permeable or conductive?	נו		а	Does any circumstantial evidence of ground water or drinking water contamination exist?
Æ			ls drinking water drawn from a shallow aquifer?				Does any drinking-water well warrant sampling?
-	7	=	Are suspected contaminents highly mobile in ground water?	а			Other criteria?
=	X	Ξ	Does any circumstantial evidence of ground water or drinking water contamination exist?				PRIMARY TARGET(S) IDENTIFIED?
==	=		Other criterie? NONE				
IJ	X		SUSPECTED RELEASE?				

Summarize the rationale for suspected release lattach an additional page of necessary):

NO RELEASE IS SUSPECTED TO HAVE OCCURRED TO GROUNDWATER

Summarize the rationale for Primary Targets (attach an additional page if necessary):

TEPA FILES; CONVERSATIONS WITH LOCAL WATER OPERATORS;

GROUND WATER PATHWAY

Pathway Characteristics

Answer the questions at the top of the page. Refer to the Ground Water Pathway Criteria List (page 7) to hypothesize whether you suspect that hazardous substances associated with the site have been released to ground water (GW). Record the depth to the aquifer (in feet): the difference between the deepest depth of waste deposited and the shallowest depth of the top of the aquifer at or as near as possible to the site. Note whether the site is in karst terrain (characterized by abrupt ridges, sink holes, caverns, springs, disappearing streams). State the distance (in feet) from any source to the nearest well used for drinking water.

Likelihood of Release (LR)

- 1. Suspected Release: Hypothesize based on professional judgment guided by the Ground Water Pathway Criteria List (page 7). Remember to use only Column A for this pathway if you score a suspected release to ground water, and do not evaluate factor 2.
- 2. No Suspected Release: If you do not suspect a release, determine the GW LR score based on depth to aquifer or whether the site is in an area of karst terrain. If you do not suspect a release to ground water, remember to use only Column B to score this pathway.

Targets (T)

Evaluates the threat to populations who obtain their drinking water from GW supplies. To apportion populations served by blended drinking-water supply systems, determine the percentage of population served by each well within the 4-mile target distance limit based on its production.

- 3. Primary Target Population: Populations served by any drinking-water wells that you suspect have been exposed to hazardous substances released from the site. Use professional judgment guided by the Ground Water Pathway Criteria List (page 7) to make this determination. In the space provided, enter the population served by any wells you suspect have been exposed to hazardous substances from the site. If only the number of residences is known, use the average county residents per household (rounded to the next integer) to determine population served. Multiply the population by 10 to determine the Primary Target Population score. Note that if you do not suspect a release, there is no Primary Target Population.
- 4. Secondary Target Population: Populations served by any drinking-water wells within four miles of the site that you do not suspect have been exposed to hazardous substances should be evaluated on PA Table 2a or 2b (used for wells drawing from karst aquifers) (page 9). Circle the assigned value for the population in each distance ring and enter it in the column on the far right side of the table. Sum the far right column and enter the total as the Secondary Target Population factor score.
- 5. Nearest Well represents the threat posed to the well that is most likely to be exposed to hazardous substances. If you have identified a Primary Target Population, enter 50. Otherwise, obtain the Nearest Well value from PA Table 2a or 2b for the closest distance category with a drinking-water well population.
- 6. Wellhead Protection Area (WHPA): WHPAs are special areas designated by States for protection under Section 1428 of the Safe Drinking Water Act. Local/State and EPA Regional water officials can provide information regarding the location of WHPAs.
- 7. Resources: Score automatically assigned. Do not override; do not investigate resources.

Target Scoring Instructions: Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release). Note that if there are no drinking-water wells within the target distance limit, the total targets score for either Column A or Column B will be 5 (automatically assigned for resources).

Waste Characteristics (WC)

8. Waste Characteristics score is assigned from page 4. However, if any Primary Target has been identified for GW, assign the higher of the score calculated on page 4 or a score of 32.

Ground Water Pathway Score: Multiply the scores for LR, T, and WC. Divide the product by 82,500. Round the result to the nearest integer. If the result is greater than 100, assign 100.

6-25-91

GROUND WATER PATHWAY SCORESHEET

	Pathway Characteristics	·		
	Do you suspect a release (see Ground Water Pathway Criteria List, page 7)? Is the site located in karst terrain? Depth to aquifer:	Yes Yes	No X No X	
	Distance to the nearest drinking-water well:		4000 It	
		A	8	•
LII	KELIHOOD OF RELEASE	Suspected Release	No Suspected Release	Referenc
1.	SUSPECTED RELEASE: If you suspect a release to ground water (see page 7), assign a score of 550, and use only column A for this pathway.		(500 ≈ 340)	. 1
2.	NO SUSPECTED RELEASE: If you do not suspect a release to ground water, and the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score of 500; otherwise, assign a score of 340. Use only column 8 for this pathway.		500	2
	LR =		500	
T	ARGETS			
3.	PRIMARY TARGET POPULATION: Determine the number of people served by drinking water from wells that you suspect have been exposed to hazardous substances from the site (see Ground Water Pathway Criteria List, page 7).			3
4.	SECONDARY TARGET POPULATION: Determine the number of people served by drinking water from wells that you do NOT suspect have been exposed to hazardous substances from the site, and assign the total population score from PA Table 2.			
	Are any wells part of a blended system? Yes No χ If yes, attach a page to show apportionment calculations.	[\$6.26.19.8.6.12. = 0	424	4
5.	NEAREST WELL: If you have identified any Primary Targets for ground water, assign a score of 50; otherwise, assign the highest Nearest Well score from PA Table 2. If no drinking-water wells exist within 4 miles, assign a score of zero.	120, 5, = 01	9	5
6.	. WELLHEAD PROTECTION AREA (WHPA): Assign a score of 20 if any portion of a designated WHPA is within ¼ mile of the site; assign 5 if from ¼ to 4 miles.		0	6
7.	RESOURCES: A score of 5 is assigned.	5	5	
	T =		438	
W	VASTE CHARACTERISTICS			_
8.	 A. If you have identified any Primary Targets for ground water, assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part B of this factor. 	(100 = 32)		
	B. If you have NOT identified any Primary Targets for ground water, assign the waste characteristics score calculated on page 4.	(100.32, er 161	100	
	wc =		100	
G	GROUND WATER PATHWAY SCORE: LR x T x WC 82,500	100	7000 od 1000	

Site Name: CARUS CHEARAL CO. Date: 6-25-91

PA TABLE 2: VALUES FOR SECONDARY GROUND WATER TARGET POPULATIONS

PA Table 2a: Non-Karst Aquifers

		Nearest			Pop	ulation Se	rved by W	aus Within	n Distance	Category	7		
	1	Well	,	"	31	101	301	1,001	3.001	10,001	30,001	100,001	
Distance from Site	Population	(choose highest)	to 10	10 30	to 100	to 300	to	to 3,000	te	10 20.000	100,000	10 300.000	Population Value
non site		ingines(/		30	700	300	1,000	3,000	10, 0 00	30,000	100,000	300,000	
O to % mile	0	20	1	2	5	16	52	163	521	1,633	5,214	16,325	0
> ¼ to ½ mile	0	18	1	1	3	10	32	101	323	1,012	3,233	10,121	0
>% to 1 mile	9467	③	1	,	2	, 5	17	52	167	522	1,668	5,224	167
>1 to 2 miles	132	5	1	ı	1	3	9	29	94	294	939	2,938	3
>2 to 3 miles	11208	3	1	١	1	2	7	21	68	212	678	2,122	212
>3 to 4 miles	5240	2	1	1	1	1	4	13	(42)	131	417	1,306	42
	Nearest Well =										5	Score =	424

PA Table 2b: Karst Aquifers

		Nearest	Population Served by Wells Within Distance Category								11 11 11 11 11		
	}	Welf	1	11	31	101	301	1,001	3,001	10,001	30,001	100,001	
Distance		(use 20	to	10	to .	. to	. .	to	te	(•	10	to	Population
from Site	Population	for karst)	10	30	100	300	1,000	3,000	10,000	30,000	100,000	300,000	Value
O to % mile		20	1	2	5	16	52	163	521	1,633	5,214	16,325	
> ¼ to ½ mile		20	1	1	3	10	32	101	323	1,012	3,233	10,121	<u> </u>
> % to 1 mile		20	1	1	3	8	26	82	261	816	2,607	8,162	
> 1 to 2 miles		20	,	,	3	9	26	82	261	816	2,607	8,162	
> 2 to 3 nules		20	1	,	3	8	26	82	261	816	2,607	8,162	- -
>3 to 4 miles		20	1	11	3	8	26	82	261	816	2,607	8,162	
	Nearest Well =											Score =	

SURFACE WATER PATHWAY

Migration Route Sketch: Sketch the surface water migration pathway illustrating the drainage route and identifying water bodies, the probable point of entry, flows, and targets.

SURFACE WATER PATHWAY CRITERIA LIST

Site Name: CARUS CHEMICAL CO.

Date: 6-25-9/

This chart provides guidelines to assist you in hypothesizing the presence of a suspected release and identifying primary targets. It is expected that not all of this information will be available during the PA. Also, these criteria are not all-inclusive; list any other criteria you use to hypothesize a suspected release or to identify primary targets. This chart will record your professional judgment in evaluating these factors.

The "Suspected Release" section of the chart guides you through evaluation of some site, source, and pathway conditions to help hypothesize whether a release from the site is likely. If a release is suspected, use the "Primary Targets" section to guide you through evaluation of some conditions that will help identify targets likely to be exposed to hazardous substances. You may use this section of the chart more than once, depending on the number of targets you feel may be considered "primary." In the "Primary Targets" section on this sheet, record the responses for the target that you feel has the highest probability of being exposed to hazardous substances.

Check the boxes to indicate a "yes", "no", or "unknown" answer to each question. If you check the "Suspected Release" box as "yes", make sure at you assign a Likelihood of Release value of 550 for the pathway.

			SURFACE WAT	ER P/	ATHV	VAY	
			SUSPECTED RELEASE				PRIMARY TARGETS
Ť	N 3	Dr vente		Y	N o	3 E O 3 K3 C	
×	Ξ	Ξ	ls surface water nearby?	0			Is any target nearby? If yes:
Ξ	X	Ξ	s weste quantity particularly large?				☐ Drinking-water intake
=	X	Ξ	s the drainage area large?				☐ Fishery
Ξ	X	Ξ	is precipitation heavy or infiltration rate low?				Sensitive environment
Ξ	X	=	Are sources poorly contained or prone to runoff or flooding?	C	=		Has en intake, fishery, or recreational area been closed?
×	<u> </u>	<u> </u>	is a runoff route well defined (e.g., ditch or channel leading to surface water)?	a			is there any circumstantial evidence of surface water contamination at or downstream of a target?
C)	×		Is vegetation stressed along the probable runoff path?	0	а	۵	Does any target warrant sampling? If yes:
C	X	c	Are suspected contaminents highly persistent in surface water?				☐ Drinking-water intake
=	X	Ξ	Are sediments/water unnaturally discolored?				☐ Fishery
Ξ	X	=	is wildlife unneturally obsent?	_			Sensitive environment
=	X	=	Has deposition of waste into surface water been				Other criterie?
_	`		observed?				PRIMARY INTAKE(S) IDENTIFIED?
=	×	=	Is ground water discharge to surface water likely?				PRIMARY FISHERY IDENTIFIED?
Ξ	X	3	Is there any circumstantial evidence of surface water contamination?				PRIMARY SENSITIVE ENVIRONMENT(S) IDENTIFIED?
=	=		Other criterie?				
=	X		SUSPECTED RELEASE?				

Summanze the rationale for suspected release (attach an additional page if necessary):

NO RELEASE IS SUSPECTED

Summanze the rationale for Primary Targets (attach an additional page if necessary):

TLL. FISHING GUIDE - TLL. DOC - DIVISION OF FISHERIES; PWS MICROFICHE FILES;

WETLAND INVENTORY MARS; TEPA LAND AND WATER DIVISION FILES;

ILL. DEPT. ON CONSERVATION—ID OF ENVIRONMENTAL SENSITIVE AREAS

SURFACE WATER PATHWAY

Pathway Characteristics

The surface water pathway includes three threats: Drinking Water Threat, Human Food Chain Threat, and Environmental Threat. Answer the questions at the top of the page. Refer to the Surface Water Pathway Criteria List (page 11) to hypothesize whether you suspect hazardous substances have been released to surface water. Enter the distance to surface water (the shortest overland drainage distance from a source to a surface water body). State the floodplain in which the site is located (e.g., 100-yr, 200-yr). If the site is located in more than one floodplain, use the most frequent flooding event. Identify surface water uses for the 15-mile surface water migration path.

Likelihood of Release (LR)

- 1. Suspected Release: Hypothesize based on professional judgment guided by the Surface Water Pathway Criteria List (page 11). Remember to use only Column A for this pathway if you score a suspected release to surface water, and do not evaluate factor 2.
- 2. No Suspected Release: Determine score based on the shortest overland drainage distance from a source to a surface water body. If distance to surface water is greater than 2,500 feet, determine this score based on flood frequency. Remember to use only Column B to score this pathway if you do not suspect that hazardous substances have been released.

Drinking Water Threat Targets (T)

- 3. List all drinking-water intakes on downstream surface water bodies within the 15-mile target distance limit. Provide the intake name, the type of water body on which the intake is located, the flow of the water body, and the number of people served by the intake (apportion the population if part of a blended system).
- 4. Primary Target Population: Evaluate any populations served by drinking-water intakes that you suspect have been exposed to hazardous substances released from the site. Use professional judgment guided by the Surface Water Pathway Criteria List (page 11) to make this determination. In the space provided, enter the population served by all intakes you suspect have been exposed to hazardous substances, and multiply by 10 to derive the Primary Target Population score. Remember, if you do not suspect a release, there is no Primary Target Population.
- 5. Secondary Target Population: On PA Table 3 (page 13), evaluate any populations served by drinking-water intakes that you do not suspect have been exposed to hazardous substances. Enter the population served by intakes for each flow category. Circle the assigned population value and enter it in the far right column. Sum the population values and enter the total as the Secondary Target Population score.

Gauging station data for most surface water bodies should be available from USGS or other sources. In the absence of gauging station data, see PA Table 4 (page 13) for a listing of surface water body types and associated flow categories. The flow for lakes is determined by the sum of flows of streams entering or leaving the lake. Note that the flow category "mixing zone of quiet flowing rivers" can be used for rivers with flows of at least 10 cfs, but only for intakes within 3 miles of the probable point of entry.

- 6. Nearest Intake score represents the threat posed to the drinking-water intake that is most likely to be exposed to hazardous substances. If you have identified a Primary Target Population, assign a score of 50. Otherwise assign the score determined from PA Table 3 (page 13) for the lowest-flowing water body on which there is an intake.
- 7. Resources: Score automatically assigned. Do not override; do not investigate resources.

Target Scoring Instructions: Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

Site Name: CARUS CHEMICAL Ca

Date: 6-25-91

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT SCORESHEET

Pathway Characteristics

Do you suspect a release (see Surface Water Pathway Criteria List, page 11)?

	Flood Frequency: What is the downstream distance to the nearest di	rinking-water intake? > /5	- miles	500 Is	
	nearest fishery?milesnearest sensitiv	e environment? 0.2 m	ies A	В	
LIK	ELIHOOD OF RELEASE	=	Suspected Release	No Suspected Release	References
1.	SUSPECTED RELEASE: If you suspect a release to surfactors assign a score of 550, and use only column A for this pat		.5801		<u> 7</u>
2.	NO SUSPECTED RELEASE: If you do not suspect a release the distance to surface water is 2,500 feet or less, assign wise, assign a score from the table below. Use only columns	a score of 500; other-		(509,409,300 er 100)	
	Floodplain*** Sec	X**:			
	Site in annual or 10-yr floodplain 50	00		ł	
	Site in 100-vr floodplain 40	00			
	Site in 500-yr floodplain 30	 	etrositada	500	
	Site outside 500-yr floodplain 10	00			8
		LR =	(560)	(500,400,300 at 100)	
DR	INKING WATER THREAT TARGETS	·	·	· · · · · · · · · · · · · · · · · · ·	•
	drinking-water intakes within the target distance limit, as of 5 at the bottom of this page (Resources only) and proceed intake Name Water Body Type LONE	•			9
4.	PRIMARY TARGET POPULATION: If you suspect any driabove has been exposed to hazardous substances from the Pathway Criteria List, page 11), list the intake name(s) as score based on the number of people served.	he site (see Surface Water			
	· · · · · · · · · · · · · · · · · · ·				10
5.	SECONDARY TARGET POPULATION: Determine the Se Population score from PA Table 3 based on the population from intakes that you do NOT suspect have been expose substances from the site.	ns using drinking-water			
	Are any intakes part of a blended system? Yes If yes, attach a page to show apportionment calc	No culations.		0	11
6.	NEAREST INTAKE: If you have identified any Primary Tawater threat (Factor 4), assign a score of 50; otherwise, score from PA Table 3. If no drinking-water intake exist	assign the Nearest Intake		[20,10,2,1, a si	12
7	RESOURCES: A score of 5 is assigned.		5i	я 5	
<u></u>	The state of the designed.				┪
		T =	1	5	

Site Name: CARUS JEMICAL CA Date: 6-25-91

PA TABLE 3: VALUES FOR SECONDARY SURFACE WATER TARGET POPULATIONS

Surface Water		Nearest				Population	Served by	Intakes	Within Flo	w Categor	γ			
Body Flow Characteristics (see PA Table 4)	Population	Intake (choose highest)	1 to 30	31 to 100	101 10 300	301 te 1.000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,001 to 3,000,000	Population Value
< 10 c/s	0	20	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	0
10 to 100 cfs	0	2	1	1	2	5	16	52	163	521	1,633	5,214	16,325	0
> 100 to 1,000 cfs	_0_	1	o	o	1	1	2	5	16	52	163	521	1,633	0
> 1,000 to 10,000 cfs		0	0	0	0	o	1	1	2	5	16	52	163	0
> 10,000 cfs or Great Lakes	0	0	0	0	0	o	0	0	1	1	2	5	16	0
3 mile Mixing Zone	0	10	1	3	8	26	82	261	816	2,607	8,162	26,068	81,663	0
Neare	st Intake =	0											Score -	0

PA TABLE 4: SURFACE WATER TYPE / FLOW CHARACTERISTICS WITH DILUTION WEIGHTS FOR SECONDARY SURFACE WATER SENSITIVE ENVIRONMENTS

Type of Su	riace Water Body	Dilution
Water Body Type	OR Flow Characteristics	Weight
minimal stream	flow less then 10 cfs	1
small to moderate stream	flow 10 to 100 cfs	0.1
moderate to large stream	flow greater than 100 to 1,000 cfs	N/A
large stream to river	flow greater than 1,000 to 10,000 cfs	N/A
large river	flow greater than 10,000 cfs	N/A
3-mile mixing zone of Quiet flowing streams or rivers	flow 10 cls or greater	N/A
coastal tidal water (harbors, sounds, bays, etc.), ocean, or Great Lakes	N/A	N/A

SURFACE WATER PATHWAY HUMAN FOOD CHAIN THREAT

Likelihood of Release (LR)

LR is the same for all threats in the Surface Water Pathway. Enter the LR score determined on page 12,

Human Food Chain Threat Targets (T)

- 8. The only human food chain targets are fisheries. A <u>fishery</u> is "any area of a surface water body from which food chain species are taken or could be taken for human consumption on a subsistence, sporting, or commercial basis." Food chain organisms include fish, shellfish, crustaceans, amphibians, and amphibious reptiles. Fisheries are delineated by changes in surface water body type (i.e., streams and rivers, lakes, coastal tidal waters, and oceans/Great Lakes) and whenever the flow characteristics of a stream or river change. In the space provided, identify all fisheries within the 15-mile target distance limit. Indicate the surface water body type and stream flow for each fishery. Gauging station data should be available for most surface water bodies from USGS or other sources. In the absence of gauging station data, see PA Table 4 (page 13) for a listing of surface water body types and associated flow categories. The flow for lakes is determined by the sum of flows of streams entering or leaving the lake. Note that, if there are no fisheries within the 15-mile target distance limit, the Human Food Chain Threat Targets score is zero; and you should proceed to the Environmental Threat evaluation.
- 9. Primary Fisheries are any fisheries within the 15-mile target distance limit that you suspect have been exposed to hazardous substances released from the site. Use professional judgment guided by the Surface Water Pathway Criteria List (page 11) to make this determination. If you identify any Primary Fisheries, enter 300 as the Primary Fisheries factor score, and do not evaluate Secondary Fisheries. Note that if you do not suspect a release, there are no Primary Fisheries.
- 10. Secondary Fisheries: Evaluate fisheries that you do not suspect have been exposed to hazardous substances. Determine the lowest flow for which you have identified a Secondary Fishery. Use this flow to select the Secondary Fisheries score from the table. Enter the score into either Column A or Column B.

Target Scoring Instructions: Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

Site Name: CARUS CHEMICAL CO.

ate: 6-25-91

SURFACE WATER PATHWAY (continued) HUMAN FOOD CHAIN THREAT SCORESHEET

LIK	ELIHOOD OF RELEASE			Suspected Release	No Suspected Release	References
Ente	r the Surface Water Likelihood of Release so	core from page 12.	LR =	\$60)	.500.400.300 æ 1001	
HU	MAN FOOD CHAIN THREAT TARGET	rs				
8.	Determine the water body types and flows the 15-mile target distance limit. If there a distance limit, assign a Targets score of 0 a proceed to page 15.	re no fisheries within th	e target	100 mm		
1	Fishery Name	Water Body Type	Flow	*******		
	LITTLE VERMILLION RIVER	STREAM	10-100 cfs			
	TLLINOIS RIVER	RIVER	2500 cfs			
	Z Compression R/ - GC	70000				
!			cfs			
:			cfs		m people out a service and	
i			cfs	******		13
9.	PRIMARY FISHERIES: If you suspect any to hazardous substances from the site (see assign a score of 300 and do not evaluate	Surface Water Criteria	List, page 11),			14
10.	SECONDARY FISHERIES: If you have not assign a Secondary Fisheries score from the at any fishery within the 15-mile target dis	ne table below using the		1210.30.12 w O	(210,30,12, a- 4)	
	Lowest Florence	Secondary Fisherine	core:	1	1	
	< 10 cfs	210			1	
	10 to 100 cfs	30				
	> 100 cfs, coastal	4.5		1	1	
	tidal waters, oceans, or Great Lakes	12			30	15
				(300,210,30,12 - 0		1
			Τ =	•	30	1

SURFACE WATER PATHWAY ENVIRONMENTAL THREAT

Likelihood of Release (LR)

LR is the same for all threats in the Surface Water Pathway. Enter the LR score determined on page 12.

Environmental Threat Targets (T)

- 11. There are many different types of Environmental Targets. Refer to PA Table 5 (page 16) for a listing of sensitive environments that are evaluated for the Surface Water Pathway Environmental Threat. In the space provided, identify all sensitive environments located within the 15-mile target distance limit. Indicate the surface water body type and flow at each sensitive environment. Gauging station data for most surface water bodies should be available from USGS or other sources. In the absence of gauging station data, see PA Table 4 (page 13) for a listing of surface water body types and associated flow categories. The flow for lakes is determined by the sum of flows of streams entering or leaving the lake. Note that, if there are no sensitive environments within the 15-mile target distance limit, the Environmental Targets score is zero; and you should proceed to the Waste Characteristics evaluation.
- 12. Primary Sensitive Environments are surface water sensitive environments within the 15-mile target distance limit that you suspect have been exposed to hazardous substances released from the site. Use professional judgment guided by the Surface Water Pathway Criteria List (page 11) to make this determination. If you identify any Primary Sensitive Environments, enter 300 as the Primary Sensitive Environments factor score, and do not evaluate Secondary Sensitive Environments. Note that if you do not suspect a release, there are no Primary Sensitive Environments.
- 13. Secondary Sensitive Environments are surface water sensitive environments that you do not suspect have been exposed to hazardous substances. If you have identified Secondary Sensitive Environments, evaluate them based on flow by the following process: if there are any Secondary Sensitive Environments on surface water bodies with flows of 100 cfs or less, list them in the table. Use PA Table 4 (page 13) to determine the appropriate dilution weight(s).

Use PA Tables 5 and 6 (page 16) to determine the appropriate value for sensitive environment type. When measuring length of wetlands that are located on both sides of a surface water body, sum the frontage areas. For sensitive environments that fall into more than one of the categories listed in PA Table 5, sum the values for each type to determine the environment value. For example, a wetland of 1.5 miles total length (value of 50) that is also a critical habitat for a Federally endangered species (value of 100) would receive an environment value of 150.

For each sensitive environment, multiply the dilution weight by the environment type/length of wetlands value and record the product in the far right column. Sum the values in the far right column and enter the total as the Secondary Sensitive Environments score. Do not evaluate any other Secondary Sensitive Environments. However, if all Secondary Sensitive Environments are on surface water bodies with flows of greater than 100 cfs, assign a Secondary Sensitive Environments score of 10.

Target Scoring Instructions: Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

Site Name: Date:

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT SCORESHEET

				A	8	
LIKELIHOOD OF RELI	EACE			Suspected Release	No Suspected	Cafaraga
IKELIHOOD OF RELI	EASE		·	.,50	,500,400,300 at 1001	Reference
nter the Surface Water I	Likelihood of Release s	score from page 12.	LR =		500	
				<u> </u>	10-0	
ENVIRONMENTAL TI	HREAT TARGETS			The state of the state of		
sensitive environmer and 5). If there are	nts within the 15-mile no sensitive environme	i (if applicable) for a <u>ll surf</u> target distance limit (see ents within the 15-mile ta ottom of this page, and pr	PA Tables 4 Irget distance			
Environment Name		Water Body Type	Flow			
LITTLE VERM	ILLION RIVER	STREAM	10-100 cfs			
ILLINOIS K	RIVER	RIVER	2500 cfs			
		· · · · · · · · · · · · · · · · · · ·	cfs			
			cts			
			cfs			16
			·			<u>17</u>
3. SECONDARY SENS	ITIVE ENVIRONMENT:	S:				
		s on surface water bodies ws, and do not evaluate				
Flow	Dilution Weight	Environment Type and (PA Tables 5 and 6	1 1			
10-100 cfs		WETLANDS (An:)				Ì
2500 cfs	V/A x	WETLANDS (134 Mi).	350= 0			
2500 cfs	1./4	STATE WILDLIFE MET	(25)= 0		į	
cfs	x		=		125	
cfs	x		= 0		2.5	
			Sum	-		
B. If NO Secondary	v Sensitive Environmen	nts are located on surface	water bodies	110 at 01	, ro = 0+,	
	00 cfs or less, assign		, water nomes		0	18
1, 1 Mil., 1 M					2.5	
			Τ:	*	14.0	1

Site Name: CARUS CHEMICAL Date: 6-25-91

PA TABLE 5: SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

Sensitive Environment	Assigned Value
Critical nabitet for Federally designated engangered or threatened species	100
Marine Sanctuary	
National Park	
Cesignated Federal Wilderness Area	
Ecologically important areas identified under the Coastal Zone Wilderness Act	
Sensitive Areas identified under the National Estuary Program or Near Coastal Water Program of the Clean Water	Act
Critical Areas Identified under the Clean Lakes Program of the Clean Water Act (subareas in lakes or entire small li	
National Monument	
National Seashore Recreation Area	
National Lakeshore Recreation Area	
Habitat known to be used by Federally designated or proposed endangered or threatened species	75
National Preserve	
Vational or State Wildlife Refuge	
Unit of Coastal Barner Resources System	
Federal land designated for the protection of natural ecosystems	
Administratively Proposed Federal Wilderness Area	
Spawning areas critical for the maintenance of fish/shellfish species within a river system, bay or estuary	
Migratory pathways and feeding areas critical for the maintenance of anadromous fish species in a river system	
Terrestrial areas utilized by large or dense aggregations of vertebrate animals (semi-aquatic foragers) for breeding	
National river reach designated as recreational	
Habitat known to be used by State designated endangered or threatened species	50
Habitat known to be used by a species under review as to its Federal endangered or threatened status	
Coastal Barner (partially developed)	
Federally designated Scenie or Wild River	
State land designated for wildlife or game management 13 mg Down STREAM	25
State designated Scanic or Wild River	
State designated Natural Area	
Particular areas, relatively small in size, important to maintenance of unique biotic communities	
State designated eress for the protection/maintenance of aquatic life under the Clean Water Act	5
See PA Table 6 (Su	rriace Water Pathway
Wetlands	90
PA Table 9	(Air Pathway)

PA TABLE 6: SURFACE WATER WETLANDS FRONTAGE VALUES

Total Langth of Wetlands	Assigned Volume
Less then 0.1 mile	0
0.1 to 1 mile	25
Greater than 1 to 2 miles	50
Greater than 2 to 3 miles	75
Greater than 3 to 4 miles	100
Greeter than 4 to 8 miles	150
Greater than 8 to 12 miles	250
Greater than 12 to 16 miles	350
Greater than 16 to 20 miles	450
Greater than 20 miles	500

SURFACE WATER PATHWAY WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE

Waste Characteristics (WC)

14. Waste Characteristics score is assigned from page 4. However, if any Primary Target has been identified for any surface water threat, assign the higher of the score calculated on page 4 or a score of 32.

Surface Water Pathway Threat Scores

Fill in the matrix with the appropriate scores from the previous pages. To calculate the score for each threat: multiply the scores for LR, T and WC, divide the product by 82,500, and round the result to the nearest integer. The Drinking Water Threat and Human Food Chain Threat are subject to a maximum of 100. The Environmental Threat is subject to a maximum of 60. Enter the rounded threat scores into the right side of the table.

Surface Water Pathway Score

Sum the individual threat scores to determine the Surface Water Pathway Score. If the sum is greater than 100, assign 100.

Site Name: CARUS CHEMICAL CO.

Date: 6-25-91

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

	A	8
WASTE CHARACTERISTICS	Suspected Release	No Suspected Release
14. A. If you have identified ANY Primary Targets for surface water (pages 12, 14, or 15), assign the waste characteristics score calculated on page 4, or a score of 32, whichever is GREATER; do not evaluate part 8 of this factor.	100 at 751	
If you have NOT identified any Primary Targets for surface water, assign the waste characteristics score calculated on page 4.	;100.22, or 10)	(10 0.32, a: 18)
WC =		100

SURFACE WATER PATHWAY THREAT SCORES

Threat	Likelihood of Release (LR) Score (from page 12)	Targets (T) Score	Pethwey Waste Cherecteristics (WC) Score (determined above)	Threat Score LR x T x WC / 82.500		
Drinking Water	500	5	100	3.22		
Human Food Chain	500	30	100	1 8		
Environmental	500.	2.5	100	2 1.513		

SURFACE WATER PATHWAY SCORE (Drinking Water Threat + Human Food Chain Threat + Environmental Threat)

23

SOIL EXPOSURE PATHWAY CRITERIA LIST

Site Name: CARUS CHEMICAL CO Date: 6-25-91

This chart provides guidelines to assist you in hypothesizing the presence of a resident population. It is expected that not all of this information will be available during the PA. Also, these criteria are not all-inclusive; list any other criteria you use to hypothesize resident populations. This chart will record your professional judgment in evaluating this factor.

Use the resident population section to guide you through evaluation of some site and source conditions that will help identify targets likely to be exposed to nazardous substances. You may use this section of the chart more than once, depending on the number of nearby people you feel may be considered part of a resident population. Record the responses for the resident population target that you feel has the highest probability of being exposed to hazardous substances.

Check the boxes to indicate a "yes", "no", or "unknown" answer to each question.

SOIL EXP	OSURE PA	THW	AY	
SUSPECTED CONTAMINATION				RESIDENT POPULATION
	Y •	N a	JENED\$C	
Surficial contamination is assumed.		¥	3	Are there residences, schools, or day care facilities on or within 200 feet of areas of suspected contamination?
	2	X	3	Are residences, schools, or day care facilities located on adjacent land previously awned or leased by the site owner/operator?
	0	X	0	Is there an averland migration route that might spread hazardous substances near residences, schools, or day care facilities?
,		*		Are there any reports of adverse health effects from onsite or adjacent residents or students, exclusive of apparent drinking water or air contamination problems?
		Þ		Does any offsite property warrant sampling?
		ò		Other criterie?
	Æ	а		RESIDENT POPULATION IDENTIFIED?

SOIL EXPOSURE PATHWAY

Pathway Characteristics

Answer the questions at the top of the page. Identify people who are most likely to be regularly exposed to contamination at the site because they work at the facility or reside or attend school or day care on or within 200 feet of an area of suspected contamination. If the site is active, estimate the number of full or part-time workers at this facility. Note that evaluation of targets is based on current site conditions.

Likelihood of Exposure (LE)

1. Suspected Contamination: The PA always assumes that surficial contamination exists. Do not override this assumption. Surficial contamination often exists even if wastes have been "removed" or are believed to be buried below the surface. A 550 is automatically assigned for this factor; only Column A can be scored for this pathway.

Resident Population Threat Targets (T)

- 2. Resident Population corresponds to "primary targets" for the migration pathways. Determine if there are people living or attending school or day care on or within 200 feet of areas of suspected contamination. Use professional judgment guided by the Soil Exposure Pathway Criteria List (page 18) to make this determination. Record the number of people identified as Resident Population. Multiply this population by 10 to determine the Resident Population factor score.
- 3. Resident Individual: If you have identified a Resident Population, assign a score of 50. Otherwise, assign a score of 0.
- 4. Workers: Estimate the number of full and part-time workers regularly present at this facility and other facilities where contamination is suspected. Assign a score for the workers factor from the table.
- 5. Terrestrial Sensitive Environments: In the table provided, list each Terrestrial Sensitive Environment located on areas of suspected contamination. Use PA Table 7 (page 20) to assign a value for each sensitive environment. Sum the values of all the terrestrial sensitive environments and assign the total as the factor score.
- 6. Resources: Score automatically assigned. Do not override; do not investigate resources.

Target Scoring Instructions: Sum the target scores in Column A.

Waste Characteristics (WC)

7. Enter the WC score determined on page 4. There is no exception for this pathway.

Soil Exposure Pathway Score: Calculate the Resident Population Threat Score by multiplying the scores for LE, T, and WC, and dividing the product by 82,500. Round the threat score to the nearest integer. If the result is greater than 100, assign 100. The Nearby Population Threat Score is always 2 for the PA; do not override this score. Add these 2 points to the calculated Resident Population Threat Score to determine the Soil Exposure Pathway Score, subject to a maximum of 100.

Site Name: CARUS CHEMICAL CO. Date: 6-25-91

SOIL EXPOSURE PATHWAY SCORESHEET

7 attiwey Characteristics			
Do any people live on or within 200 ft of areas of suspected contamination?	Yes	No 🗶	
Do any people attend school or day care on or within 200 ft of areas			
of suspected contamination?		No <u>X</u>	
Is the facility active? Yes No If yes, estimate the number of wo	rkers: 105	ŀ	
	A	8	
	Suspected	No Suspected	
IKELIHOOD OF EXPOSURE		Contamination	Re
	(560)		-
SUSPECTED CONTAMINATION: Surficial contamination is assumed.			
A score of 550 is assigned.	550		
	L		
RESIDENT POPULATION THREAT TARGETS			
DECIDENT PORM ATION. Determine the number of people according socidences			
2. RESIDENT POPULATION: Determine the number of people occupying residences or attending school or day care on or within 200 feet of areas of suspected			
contamination (see Soil Exposure Pathway Criteria List, page 18).			
people x 10 =	10		,
people x 10 =	;50 = 01	Type Digital are I restau	-
RESIDENT INDIVIDUAL: If you have identified any Resident Population (Factor 2),			
assign a score of 50; otherwise, assign a score of 0.	0		ي ا
LUGBURDO A LICENSE CONTRACTOR CON	(15, 10, 5, 0)		
. WORKERS: Assign a score from the following table based on the total number of			
workers at the facility and nearby facilities with suspected contamination:	1		İ
Number of Wirtness Score			
0 0			
1 to 100 5	1		
101 to 1,000 10	10		
>1,000 15			-
i. TERRESTRIAL SENSITIVE ENVIRONMENTS: Assign a value from PA Table 7	1		
for each terrestrial sensitive environment that is located on an area of suspected			
contamination:			
Terrestrial Sensitive Environment Type Value			
NONE			
Sum =			
	(5)		1 -
5. RESOURCES: A score of 5 is assigned.	5		
	-	6,000000 0.0000000 0.0000000000000000000	ł
T =	15		1
•	<u> </u>	Parabases (1977)	1
WASTE CHARACTERISTICS	[100, 32, as 18]		7
7. Assign the waste characteristics score calculated on page 4. WC =			1
7. Assign the waste characteristics score calculated on page 4. WC =	100		
	-		4
	(autyped 10 o	manufacture of 1008	1
RESIDENT POPULATION THREAT SCORE: LE x T x WC		_	
82.500	//)	
			7
NEARBY POPULATION THREAT SCORE:		2	
Assign a score of 2			1
		manus et 100t	7
SOIL EXPOSURE PATHWAY SCORE:		^	1
Resident Population Threat + Nearby Population Threat	1 /	人	

Site Name: CARUS CHEMICAL

Date: 6-25-91

PA TABLE 7: SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

Terrestrial Sensitive Environment	Assigned Value
Terrestrial critical habitat for Federally designated endangered or threatened species	100
National Park	
Designated Federal Wilderness Area	
National Monument	
Terrestrial habitat known to be used by Federally designated or proposed threatened or endangered species	75
National Preserve (terrestrial)	
National or State terrestrial Wildlife Refuge	
Federal land designated for protection of natural ecosystems	
Administratively proposed Federal Wilderness Area	
Terrestrial areas utilized by large or dense aggregations of animals (vertebrate species) for breeding	
Terrestrial habitat used by State designated endangered or threatened species	50
Terrestrial habitat used by species under review for Federally designated endangered or threatened status	
State lands designated for wildlife or game management	25
State designated Natural Areas	
Particular areas, relatively small in size, important to maintenance of unique biotic communities	

AIR PATHWAY CRITERIA LIST

Site Name: CARUS CHEMICAL CA

Date: 6-25-91

This chart provides guidelines to assist you in hypothesizing the presence of a suspected release. It is expected that not all of this information will be available during the PA. Also, these criteria are not all-inclusive; list any other criteria you use to hypothesize a suspected release. This chart will record your professional judgment in evaluating this factor.

The "Suspected Release" section of the chart guides you through evaluation of some conditions to help hypothesize whether a release from the site is likely. For the Air Pathway, if a release is suspected, "Primary Targets" are any residents, workers, students, or sensitive environments within % mile of the site.

Check the boxes to indicate a "yes", "no", or "unknown" answer to each question. If you check the "Suspected Release" box as "yes", make sure that you assign a Likelihood of Release value of 550 for the pathway.

			AIR PATI	
			SUSPECTED RELEASE	PRIMARY TARGETS
*	N o	3€0383 €		
=	¥	Ξ	Have odors been reported?	If you suspect a release to air, evaluate all populations and sensitive environments within ¼ mile fincluding those onsite) as Primary Targets.
=	X	3	Has a release of hazardous substances to the air been directly observed?	: !
	×		Are there any reports of adverse health effects (e.g., headaches, nauses, dizziness) potentially resulting from migration of hazardous substances through the air?	
	X		Is there any circumstantial evidence of an air release?	
=	×		Other criteria?	
	¥		SUSPECTED RELEASE?	

Summan	ze the rationale for	suspected release (attach an additional page if necessary):
NO	RE LEASE	SUSPECTED
	•	

Pathway Characteristics

Answer the questions at the top of the page. Refer to the Air Pathway Criteria List (page 21) to hypothesize whether you suspect hazardous substances have been released from the site to the air. Due to dispersion, releases to air are not as persistent as releases to water migration pathways and are much more difficult to detect. Develop hypotheses concerning the release of hazardous substances to air based on "real time" considerations. Record the distance (in feet) from any source to the nearest regularly occupied building.

Likelihood of Release (LR)

- 1. Suspected Release: Hypothesize based on professional judgment guided by the Air Pathway Criteria List (page 21). Remember to use only Column A for this pathway if you score a Suspected Release, and proceed to the target evaluation section.
- 2. No Suspected Release: If you do not score a Suspected Release, enter 500. Remember to use only Column B to score this pathway if you do not suspect hazardous substances are being released.

Targets (T)

- 3. Primary Target Population are those people subject to exposure from a suspected air release of hazardous substances from the site. Use professional judgment, guided by the Air Pathway Criteria List (page 21), to make this determination. Note that if you do not suspect a release, there are no primary population targets. If you score a Suspected Release, record the residential, student, and worker population located on or within ¼-mile of the site. Multiply this number of people by 10; enter the factor score in Column A.
- 4. Secondary Target Population are those people in distance categories not suspected to be subject to exposure from airborne hazardous substances. Determine the number of residents, students, and workers, and enter the summed population in PA Table 8 (page 23) for each distance category. Circle the population value for the distance category and record the value in the far right column of the table. Sum these values and enter the total as the factor score.
- 5. Nearest Individual represents the threat posed to the person most likely to be exposed to hazardous substances released from the site. If you have identified any Primary Population, enter 50. Otherwise, assign the score from the "Nearest Individual" column of PA Table 8 (page 23), for the nearest distance ring in which you have identified a Secondary Population.
- 6. Primary Sensitive Environments: List the sensitive environments (on or within % mile of the site) subject to exposure from a suspected air release of hazardous substances from the site. Assign values for sensitive environment type (from PA Table 5, page 16) and/or wetland acreage (from PA Table 9, page 23). Sure the values and enter the total as the factor score.
- 7. Secondary Sensitive Environments: On PA Table 10 (page 23), list the sensitive environments that are in distance categories within ½ mile not suspected to be subject to exposure from airborne hazardous substances. Assign a value for each environment (PA Tables 5 and 9). Record the value for each Secondary Sensitive Environment on PA Table 10 (page 23), and multiply by the distance weight for that distance category. Sum the products, and enter the total as the factor score.
- 8. Resources: Score automatically assigned. Do not override; do not investigate resources.

Target Scoring Instructions: Sum the target scores in Column A (Suspected Release) or Column B (No Suspected Release).

Waste Characteristics (WC)

9. Waste Characteristics score is assigned from page 4. However, if any Primary Target has been identified for the air pathway, assign the higher of the score calculated on page 4 or a score of 32.

Air Pathway Score: Multiply the scores for LR, T, and WC. Divide the product by 82,500. Round the result to the nearest integer. If the result is greater than 100, assign 100.

Site Name: CARUS CHEMICAL CO. Date: 6-25-91

AIR PATHWAY SCORESHEET

		Pathway Characteristics			
		Do you suspect a release (see Air Pathway Criteria List, page 21)? Distance to the nearest individual:	Yes	No <u>}</u> O ft	
			Α	8	
LIK	ELIHO	OOD OF RELEASE	Suspected Release	No Suspected Release	Reference
		ECTED RELEASE: If you suspect a release to air (see page 21), assign a of 550, and use only column A for this pathway.	i 5 501	5009	24
		SPECTED RELEASE: If you do not suspect a release to air, assign a of 500, and use only column 8 for this pathway.		500	25
T.	DOST	LR =		500	
IA	RGET	5			Ī
3.	to exp	ARY TARGET POPULATION: Determine the number of people subject osure from a release of hazardous substances through the air (see Air ay Criteria List, page 21).			26
4.	within	NDARY TARGET POPULATION: Determine the number of people the 4-mile target distance limit, and assign the total population score from ble 8.		79	27
5.	pathw	EST INDIVIDUAL: If you have identified any Primary Targets for the air ray, assign a score of 50; otherwise, assign the highest Nearest Individual from PA Table 8.	(\$0,20,7,2,1, er 0)	2.0	28
6.	(PA T	ARY SENSITIVE ENVIRONMENTS: Sum the sensitive environment values able 5) and wetland acreage values (PA Table 9) for environments subject posure from air hazardous substances (see Air Pathway Criteria List, page 21). Sensitive Environment Type Value			
		Sum =			29
7.		NDARY SENSITIVE ENVIRONMENTS: Use PA Table 10 to determine core for secondary sensitive environments.		2-64	30
8.	RESO	URCES: A score of 5 is assigned.	5	5 5	
		T =		106-64	
W	ASTE	CHARACTERISTICS	(100 ar 32)	Broomban - 1 / Jan	1
9.	ch	you have identified any Primary Targets for the air pathway, assign the waste laracteristics score calculated on page 4, or a score of 32, whichever is REATER; do not evaluate part B of this factor.		1100.22. e 181	
		you have NOT identified any Primary Targets for the air pathway, assign the aste characteristics score calculated on page 4.	(100.32, a 184	100	
		wc =		100]
AI	R PA'	THWAY SCORE: LR x T x WC 82,500	64,63	recommend of 1006	

Site Name: CARVS CHE CAL CO. Date: 6-25-9/

PA TABLE 8: VALUES FOR SECONDARY AIR TARGET POPULATIONS

	1	Noarest	4.		er uit	ρ	apulation	Within Di	tance Cal	tegory					
	Į.	Individual	1	11	31	101	301	1,001	3,001	10,001	30,001	100,001	300,001	1,000,001	
Distance	Boardation	(choose	10	to	to	to	to	to	to	to	to	10	to	10	Population Value
from Site	Population	highest)	10	30	100	300	1.000	3,000	10.000	30,000	100,000	300,000	1,000,000	3,000,000	Value
Onsite	105	20	1	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,246	16
>0 to ½ mile	1035	20	1	1	1	4	13	①	130	408	1,303	4,081	13,034	40,811	4/
>¼ to ½ mile	2069	2	o	o	1	1	3	9	28	88	282	882	2,815	8,815	9
>% to 1 mile	6229	,	0	0	0	1	1	3	③	26	83	261	834	2,612	8
>1 to 2 miles	6965	0	o	0	0	o	1	1	3	8	27	83	266	833	3
> 2 to 3 miles	8212	٥	0	0	o	0	1	1	1	4	12	38	120	376	
>3 to 4 niiles	3099	o	0	o	0	0	0	1	0	2	7	23	73	229	
Nearest Individual = 20 Score = 7											79				

PA TABLE 9: AIR PATHWAY VALUES FOR WETLAND AREA

Medical Area	Earth Value
Less then 1 sore	0
1 to 50 acres	25
Greater than 50 to 100 acres	75
Greater than 100 to 150 acres	125
Greater than 150 to 200 acres	175
Greater than 200 to 300 acres	250
Greater than 300 to 400 acres	350
Greater than 400 to 500 acres	450
Greater than 500 acres	500

PA TABLE 10: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY SECONDARY SENSITIVE ENVIRONMENTS

11

Ofstance	Okrtance Visite	ffrom PA Toble 5 or 91	Arector
Onsite	0.10	x WETLAND S.CA (25)	2.5
0-1/4 mi	0.025	x O	0
1/4-1/2mi	0.0054	x WETLAND 8.3A 25 x x	.135
		Total Environments Score	2 435

Total Environments Score = [-6 -6 -

SITE SCORE CALCULATION

in the column labeled S, record the Ground Water Pathway score, the Surface Water Pathway score, the Soil Exposure Pathway score, and the Air Pathway score. Square each pathway score and record the result in the S^2 column. Sum the squared pathway scores. Divide the sum by 4, and take the square root of the result to obtain the Site Score.

Recommendation

Provide a recommendation for site disposition in accordance with EPA guidelines.

SITE SCORE CALCULATION

	_				
		S		S²	
GROUND WATER PATHWAY	SCORE (S,):	100		10,000	
SURFACE WATER PATHWAY	SCORE (S,):	23		529	
SOIL EXPOSURE PATHWAY	SCORE (S,.):	12		144	
AIR PATHWAY SCORE (S.):		65		4225	
SITE SCORE:		$\sqrt{\frac{S_{gw}^{2} + S_{sw}^{2} + S_{so}^{2} + S_{a}^{2}}{4}}$	=	61.03	

e.	18	8.		V

RECOMMENDATION

U	MMARY		
	•	YES	NO
1.	Is there a high possibility of a threat to nearby drinking water wells by migration of hazardous substances in ground water?	0	
	A. If yes, identify the wells recommended for sampling during the SI.		
	B. If yes, how many people are served by these threatened wells?		
2.	Are any of the following suspected to have been exposed to hazardous substances through surface water migration from the site?		
	A. Drinking water intake		
	B. Fishery		
	C. Sensitive environment: wetland, critical habitat, others		
	D. If yes, identify the targets recommended for sampling during the SI.		
2	De consideration of attend cabacil or day come on as within 200 to of any area of avenaged		а
3.	Do people reside or attend school or day care on or within 200 ft of any area of suspected contamination?		
4.	Are there public health concerns at this site that are not addressed by PA scoring considerations? If yes, explain:		ū
		ŀ	

References

- 1. IEPA Land files; IEPA Water files.
- 2. Ref. 1 above.
- 3. N/A.
- 4. Conversations with local water operators.
- 5. Illinois State Water Survey Well Logs; PWS Microfiche files; conversations with local water operators.
- 6. REF 1 above.
- 7. REF 1 above.
- 8. FIA Flood Hazard Boundary Map, March 19, 1976, U.S.

 Department of Housing and Urban Development, for City of
 LaSalle, Il.
- PWS Microfiche files; conversations with local water operators.
- 10. N/A.
- 11. REF 9 above.
- 12. REF 9 above.
- 13. USGS Topographic Maps; Illinois Water Resources Databook, Vol. 2, 1989.
- 14. N/A.
- 15. REF 13 above.
- 16. REF 13 above; Illinois Department of Conservation.
- 17. N/A.
- 18. Illinois Department of Conservation; Wetland Inventory Maps.
- 19. N/A.
- 20. 1980 U.S. Census; Site Reconnaissance of 5-22-91; Site

Representative Interview; USGS Topographic Quadrangle Maps.

- 21. REF 20 above.
- 22. REF 20 above.
- 23. Illinois Department of Conservation.
- 24. N/A.
- 25. IEPA Air Division files; IEPA Land Division files.
- 26. N/A.
- 27. USGS Topographic Quadrangle Maps; 1980 Census Data.
- 28. REF 27 above.
- 29. N/A.
- 30. Wetland Inventory Maps; Illinois Department of Conservation.